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Abstract—In this paper a constitutive model based on an internal variable-formulation of plasticity
theory for the non-linear analysis of concrete is presented. The model uses a new yield criterion
which matches experimental data quite well and it accounts for both clastic and plastic stiffness
degradations effects. Onset and amount of cracking cian be studied by a simple postprocessing of
the finite-element plasticity solution. The accuracy of the model is checked with some examples of
application.

I INTRODUCTION

The classical theory of plasticity, like any mathematical representation of the mechanical
behavior of solids, may be viewed in two ways: as a translation of physical reality, and as
a model that approximates the behavior under certain circumstances. The first view is often
held with regard to ductile crystalline solids, especially metals, although the attempts to
relate mathematical plasticity theory to distocations have not been markedly successful.
With regard to conerete and rock, however, it has generally been acknowledged that such
prominent features of plasticity theory as a well defined yield criterion and strictly clastic
unloading arc approximations at best. Nevertheless, many problems involving these
materials have been quite successfully treated by means of plasticity theory, and these
results are not invalidated by fuct that other problems have not been so successfully treated,
nor by the fact thut other models may have been equally effective.

The broadest arca of success of plasticity theory with concrete is the treatment of
reinforced concrete (see Chen, 1982 for a survey of the results) and other situations in which
the material acts primarily in compression. [n problems in which tension, with the attendant
crack development, plays a significant role—such as shear failure in reinforced-concrete
structures—the usual procedure nowadays is to apply plasticity theory in the compression
zone, and treat the zones in which at least one principal stress is tensile by one of several
versions of fracture mechanics, such as: lincar elastic fracture mechanics, BeZzant and
Cedolin (1980) : smeared-crack models, Rashid (1968), Suidan and Schnobrich (1973), de
Borst and Nauta (1984} the fictitious-crack model, Hillerborg er al. (1976); and crack-
band theory, Bazant and Oh (1983).

In spite of the success of this approach in solving numecrous problems, it presents some
inconvenient features that limit its usefulness, such as the need for defining uncoupled
behavior along cach principal stress (or strain) direction, the use of a quite arbitrary shear
retention factor to casurc some shear resistance along the crack, the lack of equilibrium at
the cracking point when more than onc crack is formed (Ofiate ef af.. 1986), the difficulties
of defining stress paths following the opening and closing of cracks under cyclic loading
conditions, and the difticultics of dealing with the combined effect of cracking and plasticity
at the damaged points (de Borst, 1987).

Some of these limitations could be avoided if a single constitutive model could be used
that governs the non-lincar behavior of concrete, including failure, in both tension and
compression, with appropriate allowance made for the different values of the parameters
describing the two modes. [t is the purpose of this paper to formulate such a model in the
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form of a theory of plasticity. [t must be recognized at the outset. however, that not all
non-linear behavior of concrete, rock and similar materials is represented by permanent
{plastic) deformation: at least in the early stages. it may be caused primarily by stiffness
degradation, and the model must take this into account.

Asis well known. concrete and geomaterials eventually exhibit strain-softening. leading
to a complete loss of strength, under all stress processes other than triaxial compression in
which the hydrostatic pressure predominates over the stress deviator, In particular, strain-
softening occurs in both simple tension and simple compression. While strain-softening in
tension is naturally described in the models based on fracture mechanics. strain-softening
in compression is controversial {Read and Hegemier, 1984). However, the localization and
mesh-sensitivity associated with strain-softening oceur in tension and compression alike. In
fact, the qualitative behavior of concrete and many rocks is not significantly different in
tension and compression. In this regard they resemble such materials as cohesive soils, and
may be classed with them as frictional marerials with cohesion. The eventual foss of strength
may be thought of as the vanishing of the cohesion.

The essential elements of any mode] based on classical plasticity theory are the vield
criterion, the flow rufe and the hardening rude, the tast to be interpreted in a broad sense so
that both hardening and softening may be accounted for, and to be identified with the
evolution equations of the internal variables contuined in the yield criterion, For such a
madel to be capable of representing the behavior of o materiad such as has been deseribed,
the yiekd criterion must be of o form in which the concept of cohesion s unambiguously
defined, and the hardening rule must be such s to fead to the vanishing of the cohesion,

The first of these objectives is met by the Mohr Coulomb and Drucker Prager yvicld
¢riteria, which have the form

ey = ¢, {(H

where Fa) is a function of the stress components that is fenogencous of the first degree,
and ¢ may be identified with the cohesion or some constant multiple thereof. These eriteria,
however, do not represent experimental results for conerete or rocks very well unless they
are suitably modified (Read and Hegemier, 1984 Osate o of, 1987, 19883, In recent years
numerous yickd and falure swrfices for conerete have been proposed: Chen and Chen
{1975y, Outosen (1977, Chen (19823, Podgorski (1983}, Fardis and Chen {1986}, Klisinski
and Mroz (1987), Dvorkinerof, (1987). Very fow of them, however, have the form deseribed
above.

When a yield criterion of the form of egn (1) has been found, the second objective of
the model may be met if the evolution of the cohesion ¢ is determined by a plastic-damage
rariable which resembles the hardening rarichle of the isotropic hardening rule of classival
plasticity in that it never decreases, and it increases if and only if plastic deformation tukes
place. However, strain-softening requires that the cohesion decrease after o maximum valae
(for which eqn (1) represents the fuilure surfuce) has been reached, and that it vanishes
when the plastic-damage variable attains a eritical vatue.

A model meeting the aforementioned objectives, based on a simple modification of
classical Mohr Coulomb plasticity, has been previously prosented by the authers {Onate
et al., 1987, 1988). It is the purposc of this paper to present an improved moded of this type
based on an internal-variable formulation of plasticity theory. and with a new yicld criterion
that matches experimental data for concrete quite well. The model will be desceribed and
discussed in Section 2, with clastic stiffness degradation, however, neglected. Anextension of
the modet to account for stiffness degradation will be presented in Section 3. Computational
implications of the model, with numerical solutions of illustrative problems, will be discussed
in Section 4,

3 THE PLASTIC-DAMAGE MODEL WITHOUT STIFENESS DEGRADATION

1. General features
As described in the Introduction, the plastic-damage model is a forms of classical
plasticity theory in which the usual “hardening variable™ is replaced by a plastic-damage



A plastic-damage model for concrete 30t

variable . similar to the former in that it never decreases, and increases if and only if plastic
deformation takes place. However, the plastic-damage variable cannot increase beyond a
limiting value, and the attainment of this value at a point of the solid represents total
damage, which can be interpreted as the formation of a macroscopic crack. The variable
can be non-dimensionalized so that its maximum value is unity.

As was also said, the model is intended to apply to frictional materials, in which total
damage is assumed to correspond to the vanishing of the cohesion. The yield criteria most
often used for such materials are the Mohr-Coulomb and Drucker-Prager criteria, both
of which may be written in the form

Flo) = c. 2)

where ¢ is the cohesion. and F(o) is a function that is homogeneous in the first degree in
the stress components. However, both these yield criteria have notoriously poor correlation
with experimental data for concrete and geomaterials. Numerous improvements to these
yield criteria have been proposed in recent years: Chen and Chen (1975). Ottosen (1977),
Chen (1982), Podgorski (1985), Fardis and Chen (1986). However, they do not take the form
of eqn (2} with F(o) a homogencous function of the stress components, and consequently do
not permit an unambiguous definition of the cohesion. A first attempt of the authors to
obtain suitable yield criteria for concrete in the form of eqn (2) was to modify the Mohr-
Coulomb criterion to fit experimental data. Numerical results obtained in the finite-clement
analysis of various concrete structurcs using the framework of standard plasticity theory
were encouraging and motivated the present rescarch. A new yield criterion of the form
(2). whose fit with experimental datais about as good as that of any other proposed criterion
{except possibly in the domain of high hydrostatic pressures) will be presented in Section
24,

The cohesion ¢ will be scaled so that its initial value is £, the initial yield strength in
uniaxial compression, which may be identificd with the “discontinuity™ stress, i.c. the stress
at which the volume strain attains its extremum. Consequently ¢ = /., when & = 0 and
¢ = 0 when w = 1. However, unlike the usual plasticity models with isotropic hardening, ¢
is not neeessarily taken simply as a function of x. Rather, the value of ¢ at a given k may
depend on the process—that is, the cohesion ¢ is itself assumed to be an internal variable,
governed by a rate equation in which ¢ is proportional to £, the proportionality factor
being a function of the state variables.

If degradation of the elastic stiffness is not taken into account, and if the elastic stiffness
tensor is denoted by D, then the governing equations of the model consist of : (a) the yield
criterion (2} ; (b) the elastic-plastic strain decomposition

e=D""o+¢; 3)
(c) the flow rule
& = ig, 4

where 4 the plastic loading factor and g = #G/da is the plastic flow vector normal to the
plastic potential surface G = const; (d) the rate equation for k, which will be assumed to
be of the form

K =h"(c.c,n)é"; (5)
and (¢) the rate equation for c, of the form

¢ = k{g.c.K)R. 6
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Fig. 1. Uniaxial curves (6—¢7) : (a) tension ; (b) compression.

2.2. Definition of k

Uniuxial stress states. Let us suppose that we have available experimentally derived
stress—strain diagrams in uniaxial tension and compression, and that these may be converted
into o-¢" curves, as in Fig. 1. Let us further assume that the areas under these curves are
finite and equal to g, and g., respectively. For the tension test, let us define

t
K= J ade. (N
Yo Jo

With x as the independent variable, curve (a) of Fig. | may further be converted into a
function o = f,(x), such that £,(0) = f,, and f,(1) = 0. Similarly, for the compression test we
may define

[
K= f ode? (8)
(

and convert curve (b) of Fig. | into o = f.(«x) such that f,(0) = f, and fi(1) = 0.

An analytically convenient function f{x) that may serve as cither f(x) or fi(x) and
which is consistent with the fact that experimentally observed stress-strain curves tend to
attain the zero-stress level asymptotically (rather than at a finite “ultimate strain™) may be
derived from the o-&” relation given by

g = fol(1 +a) exp (—beP) —aexp (—2beP)],

X

where ¢ and b are dimensionless constants that may be obtained if ¢ =J o de? and

0

(da/de™)],p.y are given:

So a
g=‘}; l+j .

= fobla—1).

P = 0

o
£P

d o

Note that ¢ > | implies initial hardening, while @ < | implies softening immediately after
yielding.
By integration we obtain
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Fig. 2. Uniaxial curves (o-«) : {a) tension: (b) compression.

j ode’ =1— —J—W[Z(I +a) exp (— beP) —aexp (—2be")].
2+a
so that. fora # 0.
‘ SR
exp(—hef) = ‘;[I +(1~\/r+¢:(2+a)xl.

and therefore

211 40 /B0~ (R,

a=f(x) =
u
where @) = L+a+ayx. If a>1, then f(x) attains a maximum value of
S =Lo(L+a) /4, or

a = 20fulfo) = 1+ 2/ Ul = Suulfo)-

The significance of g, and g,. 1t has been made abundantly clear over the past decade
that the strain-softening branch of the stress-strain curves of concrete and rock cannot
represent i local physical property of the material. The arguments have been advanced
both on physical grounds and on the basis of the mesh-sensitivity of numerical solutions
obtained by means of the finite-element method. The mesh-sensitivity can be largely elim-
inated if one defines ¢, = G/l and g, = G /I, where [ is a characteristic length related to the
mesh size, and G, and G, are quantities with the dimensions of energy/arca that are assumed
to be material properties.

In problems involving tensile cracking, G, may be identified with the specific fracture
energy Gy, defined as the energy required to form a unit area of crack. It has generally
been assumed that G is a true material property, and methods have been developed for
determining it (Rots et wl., 1985), For the characteristic length /, various approaches have
been proposed : Bazant and Oh (1983), Crisfield (1986). Cervera er al. (1987), Oliver (1988).

Not so much attention has been paid to the corresponding compressive problem.
Compressive failure may occur through several mechanisms—crushing, shearing, and trans-
verse cracking—and consequently G, if it is indeed a material property, cannot readily be
identificd with any particular physical energy. Morcover, it must be kept in mind that it is
only the descending portion of the stress-strain curve that is mesh-sensitive. Consequently,
a consistent definition of g, must take the form g+ g.(. where g, is the area under the o~
¢ curve up to the peak stress, and g, is the remainder. Now, g, is mesh-independent and
is therefore a material property. For g, we postulate, for convenience, that g, = G, //.
where / is the forementioned mesh-dependent characteristic length for tensile cracking, and
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G, is an assumed material property chosen in such a way that the numerical analysis of a
standard compression test gives results that coincide with experimental data,

Multiuxial stress states. In attempting to extend the preceding definitions to multiaxial
stress states. we consider first pure (but not necessarily uniaxial) tension and compression
states; that is, if the principal stresses ¢, o, o, are ordered such that oy 2 6. 2 o, then
either ¢, 2 0 (pure tension) or g, < 0 {pure compression).

More specifically, consider biaxial compression, i.e. ¢, = 0. [t is tempting to use the
total energy dissipated, j' {o,de? p+0,deh). suitably normalized, as a damage varable.
However, experiments by Kupfer e al. (1969) and Tasujt er a/. (1978} indicate that even
Jf{a 1de® alone is greater in the biaxial than in the uniaxial case. if &} is identified with the
offset strain (total strain less extrapolated elastic strain, allowing for stiffness degradation).
Moreover, on the g,-¢; curves, the peak stress occurs at a value of the &% that is approxi-
mately independent of the stress-component ratio o,/o.. Consequently the area under the
& &% curve up to the peak is approximately proportional to the ratio |6 iy, to the uniaxial
value £, (conventionally denoted £7). In order that the value of x corresponding to the peak
stress may be the same in the biaxial as in the uniaxial compression case, the definition (8)
cannot be used in the biaxial case either. An alternative definition of w, which reduces (8)
in the uniaxial case, is embodied in the rate equation

b .
K= — ~ L{K¥R. %)
Y.
Analogously, i pure multiaxial tension we can assume that

K= * XSS (10
&

Finally, we consider a state of stress that is neither pure tenston nor pure compression,
ic. o, > 0and o, < 0 (for example, simple shear), We need an equation for xk whose right-
hand side tends to that of eqn (9) or (10) as &, - 0 or g, — 0, respectively. Such an equation
may be deduced from the more general equation, presumably valid at all stress states,

. rla)

1 r(eo)

S = L, (1

o g

where r(g) is a4 weight factor depending continuously on o such that 0 < r{g) < I, with
ro)=1ila,20forallii=1,2 3 and r(g) = 0 if g, <0 for all i. A particular form of
r{e) is

Z {ad
r(e) = “;* - (12)

+

2 lal

B

where ¢x> = {(]x] + x). The special cases of pure tension and compression follow obviously
from eqn (12). For biaxial tension-compression (g, > 0, 6, = 0. 75 < 0), eqn (12) yiclds
the following rate equation for x:

| I I Ty . .
S = RIRER 4 e JARNR.
; ﬁ’:"i—ff}ﬁ{ i chf?x“‘";tj{ w5

In particular, in a simple shearing test (6, = 1= —a,, 0, =0}, the rate equation for x 1s
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K=

1] 1 1
5[;‘; JAG R gfcfc('i)é‘i]-

2.3. The ¢-x relation

It follows from the discussion in Section 2.1 that the evolution of the cohesion ¢ must
be such that ¢ = 0 as x — 1 in any process. In particular, in view of the scaling of c, the
rate equation for ¢, eqn (6). must have the solution ¢ = f(x) in a compression test and
¢ = {(fio/ fw) fi(K) in a tension test.

If. as some investigators, for example Chen (1982). hold, the compressive and tensile
stress—strain curves are similar, with f(x)/f,s = fi(x)/f. then the rate equation (6) may be
replaced by the functional relation ¢ = f{x). Otherwise, a form must be assumed for
k(o. x.c) in eqn (6) which leads to the solutions discussed above. A possible form is

5 c o) = _’_:(12_ i’ .. I-—r(a')
k(o.K,0) C[j;(x)f‘(h)+ 1)

fc'(h')]~ (13)

where r{g) is a weight factor similar to the one discussed previously, and may in fact be
likewise assumed to be given by eqn (12).

To show that ¢ = 0 as x — [ in any process, we note, first, that r will, in general, vary
in the course of the process. With the help of eqns (12) and (13), (6) may be written as

dine=rdinfi+(1-r)dinf,
and, through integration by parts, rewritten as
dlonec=drinfi+ ({1 ~ndinfl+In(f/f) dr.

Finally, it can be integrated to yield
¢ = fal Ml Selfd CXP[ J-lﬂ L) df]-

Since there is no reason to expect the integral 32§ In (f/f) dr to become infinite in any
physically realistic process, and since fi(1) = f(1) = 0, it follows that ¢ = O whenx = 1.

2.4. The yield surfuce

In biaxial tests on concrete and geomaterials it is usually found (Kupfer et al., 1969)
that the various critical surfaces in stress space (proportional limit, “discontinuity”,
“failure™) are similar. The same result is not found in triaxial compression tests, at least
at sufliciently large hydrostatic pressures; under these conditions it is found that the
hardening goes on indefinitely. In order words, while the yield surface (however defined) is
closed, the failure surfuce is open in the direction of hydrostatic compression. The so-called
cuap model (DiMaggio and Sandler, 1971) has been used to describe this discontinuity,

The present model is directed toward failure analysis, and therefore no attempt will be
made to formulate the yicld criterion in the region in which failure does not occur (should
this become necessary, the cap model may be resorted to). Equation (2), consequently, is
assumed valid only in that part of stress space in which radial loading leads to failure. With
¢ = f. this equation describes the corresponding part of the initial yield surface, while the
failure surface is attained when ¢ reaches its maximum along a given loading path. Itis an
essential feature of this model that the same function F(a), homogeneous in the first degree
in the stress components, describes both,

As was discussed in Section 2.1, the many analytical forms that have been proposed
for the failure surface of concrete are not of this nature, except for the Mohr-Coulomb and
Drucker-Prager criteria. As a rule, they are quadratic in the octahedral shear stress (or,
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equivalently in | J.. where J, is the second invariant of the stress deviator) and linear in
the mean normal stress (or in [,. the first invariant of stress) ; the third invariant enters
through the polar angle 8 in the deviatoric (7) plane (Chen and Chen, 1975 ; Ottosen. 1977 ;
Chen, 1982 ; Podgorski, 1985 Fardis and Chen. 1986). With these forms, the meridians in
the ¢,6.0; space are curved. so that the fatlure surface tends to a circular cylinder as [, —
—ac. If, however, the high-pressure region is excluded, then virtually all available failure
data can be fitted quite well into eqn (2). in which F{e) has the form

l I
F(d) = l_;; [\, 3‘]1 + 11] + [f<am.n> _:,< "Gmdx>]' (14)

where z, f and ; are dimensionless constants. This form will be adopted in the present work
for the yield surface. Note that when o, = 0. t.e. in biaxial compression, this is just the
Drucker-Prager criterion, the only parameter then being z. which can be obtained by
comparing the initial equibiaxial and umaxial compressive yield stresses fi, and flo:

Jwo [ —x

S D=2
yiclding

. (_/;\(l _/;(l) - I

A* o= L . 15
L)~ 1 (£)

Experimental values of fiy/fo lic between 110 and 1,16, yiclding o between 0.08 and 0.12.
Once 2 is known, ff can be determined from £/, where £, is the initial uniaxial tensile
yicld stress:

S _ F+at+ff
A/;n |~

or
/‘ = | - 1)(/Lu/m) —( |+ 21).
For example, if x = 0.12 and £, = 10.0/,,. then § = 7.6X.

The parameter y appears only in triaxial compression, that is, in stress states with
O < 0. Let TM and CM designate, respectively, the “tensile meridian™ (o, > 01 = ay)
and the “‘compressive meridian™ (¢, = ¢, > a,) on the yield surface. On the former,

/
Tax = 1\(’1 + 2\/ 3J.‘)~
and on the latter
Tnan = l\(ll + \/3’/2)
With ¢, < 0. the cquations of the respective meridians are therefore

(27 + 33+ G+300L = (1 —0f.  (TM)

and
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y NS+ GH3IDL = (1—0fis (CM)

here £, is the critical stress in uniaxial compression, whether yield stress (for the yield
surface) or ultimate stress (for the failure surface). Let us define

; atagivenl;
(\/ J:)CM

the present model then yields

(16)

that is. a constant. The meridians thus described are therefore straight. In spite of the claim
of Ottosen (1977) that p “‘increases from 0.5. . . but remains less than unity™, most available
experimental failure data are fitted just as well with straight as with curved meridians—
that is. with constant values of p. Typical values range from about 0.64 (Schickert and
Winkler, 1977) and 0.66 {Richart e al., 1982), to about 0.8 (Miils and Zimmerman, 1970).
From egn (16} we obtain

A valuc of p = 1 leads to y =23
The form taken by the proposed yield surface on different planes of the stress space is
shown in Fig. 3.

2.5, Flow rude and tangent stiffness

It is well known that granular materials such as concrete can exhibit a significant
volume change when subjected to severe inclastic states. This change in volume, caused by
plastic distortion, can be reproduced well by using an adequate plastic potential function
& in the definition of the flow rule as given by eqn (4). For the examples analyzed with the
present model we have chosen for G the classical Mohr-Coulomb yield function with the
angle of dilutancy ¢ substituting for the angle of internal friction ¢ (Ofiate et al., 1988):

Gloy) = [3[ bml(/+\/.73 (COS 00— ”7“). (17

In the absence of stiffness degradation, the tangent elastic-plastic stiffness operator
has the usual form of classical plasticity theory, given in the six-dimensional vector notation
for symmetric second-rank tensors by

(Dg)(DN)*

D = D BN
D= isrDg” (3

where [ = 0F/do. g = 0G/de and H is the plastic modulus, given in the case of the present
model by kh"g. Regardless of whether an associated flow rule (g = ) is used or not, eqn
(18) requires the values of the normal vector f to the yield surface. However, the yicld
surface presented in Section 2.4 is not smooth, and a decision must be made as to the value
of f at the singular points.

The singular points of the yield surface are the following : (a) those where the maximum
normal stress changes direction, comprising the compression meridians ; (b) thosc where
the maximum normal stress changes sign, belonging to the intersection of the yield surface
with the three quarter-planes that bound the triaxial compression octant, namely (i) 6, = 0,
0:<0,0,<0.(ii)0,<0.6,=0,0,<0,(iii)5,<0,0:<0,0,=0.
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The compression meridian, say ¢, = ¢, > ¢;, includes cases of axial symmetry. in
which, by virtue of said symmetry, one must have f; = f>. It is not unreasonable to extend
this rule to all cases corresponding to compression meridians—that is, to place f exactly
midway between the bounding normals.

The other set of singular points is of great importance because it includes biaxial (and,
as a special case, uniaxial) compression. Suppose that ¢, > ¢, > ¢;. Differentiating the
right-hand side of (14) with respect to ¢, yields

| 3S| Q
i —m(m-f-'x-f-d).

whered = fif g, > 0.6 = yif 0, < 0. and & is indeterminate in the range between fand y
if o, = 0. In this case there is no symmetry argument to dictate a choice of 4, and recourse
must be made to empirical information.

Andanaes et al. (1977) report that concrete under biaxial stress apparently does not
exhibit normality of the plastic strain-rate vector to the yield surface, although the results
are not altogether clear because the authors do not spell out how they define elastic strain—
that is. whether it is defined by the initial modulus or {as it should be) by the current
{degraded) secant modulus. If it is the former, then a correction would bring the results
closer to normality. Even without this correction, however, normality is fairly closely
approached at uniaxial compression in the limit from the biaxial compression quadrant.
This indicates that, if an associated How rule were used with the present yield surface, then
at the singular points corresponding 10 6., = 0, § would have the value y. This result will
be adopted as a working rule for the definition of f at the singular points belonging to
category {(b).

Uniaxial compression is represented by a point that is the intersection of the just-
discussed singularity locus with u compression meridian, If 6, =0, =0 and 7, <0, the
rule we have adopted yields

. Pt
Si=fi= (, +°‘+‘:‘)»

P \2

l
f‘=f_f§(“l+“}= —1.

With an associated flow rule, this result gives the following value of the ratio of the
transverse to the axial rotal strain rates :

£ £, _ 142 +_2}’( £‘>+y.f§,

- LT LT 7

where £ is the clastic Young's modulus, v is the elastic Poisson's ratio and £, is the current
tangent modulus.

3. THE EFFECT OF STIFFNESS DEGRADATION

3.1. General considerations

In the presence of stiffness degradation, i.e. when the elastic stiffness D) varies in the
coursc of deformation, the preceding results must be modified, in particular with regard to
the formulation of an associated flow rule,

It will be assumed that stiffness degradation can be described through the dependence
of the stiffness D on two sets of scalar-valued internal variables, to be called the efastic and
plastic degradation variables, and to be denoted d,, d.. . . . and §,, 8a. . . . , respectively.
The former are similar to the damage variables such as those considered by Simo and Ju
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(1987) and others. in that their vanation is associated with the total deformation. but
without the necessity of a damage criterion. Their evolution will be assumed to be governed
by rate equations of the form

d = ¢(ke), (19)

where k, is a vector in stress space denoting the direction of what may be called degradution
loading associated with the variable d,, and ¢, is a positive scalar factor; the ¢, and k, are
functions of & and the d.. and the ¢ may incorporate a damage threshold in the sense that
they may vanish inside some surface in the space of the state variables.

The plastic degradation variables 9, are those associated with plastic deformation, and
constitute a special case of the damage variables introduced by Chaboche (1977}, in that
they are governed by the rate equations

o, = A, (20)

where £ is the plastic loading factor in the flow rule (4). With the further choice g, = g,
these rate equations become

S =1, (21)

where the |, are likewise vectors in stress space.

A distinction between the degradation variables used here and the damage variables
that appear in continuum damage mechanics is that we do not invoke the concept of
effective stress introduced by Kachanov (1958) and developed by Rabotnov (1969) and
others, such as Martin and Leckie (1972) and Hayhurst and Leckie (1973). According to
this concept, the equations governing the behavior of the damaged material are obtained
from those of the undamaged material by replacing the true stress o by the effective stress
a/(1 —d), where d is the damage variable ; therefore the stiffness I is replaced by (1 —-d)D.
However, while the notion of effective stress may be appropriate in metal plasticity and
creep in view of its microphysical basis, it is less so in the case of conerete and geomaterials.
It will consequently be assumed, at least to begin with, that D depends on the degradation
variables in a general way, so that

a=D(d,.....38.. . )e—¢e").
It follows by differentiation with respect to time that
6 = DD 'o+D(E—E).
Now, from the chain rule and egns (19) and (21),
D=3 ¢ID/dCK]E) +3 DS
: ]
We define the operator C, by

Cié = Di+ Y oD/OdD 'alk[E): (22)

note that C. is a nonlinear operator in that it depends on the direction of £.
We also define the linear operator
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C,=D-Y cD/dsD 'al. (23)
i

From the definitions (22) and (23) it follows that
d = Ci—Cé". 249)
Let the yield criterion be given, as before, by eqn (2). Note that we are omitting any
dependence of the yield criterion on the degradation variables, in contrast to the continuum
damage mechanics model based on the aforementioned notion of effective stress. which
necessarily brings the damage variable into the yield criterion. As we said above, this model
has a physical basis for metals, but in the case of concrete and geomaterials the theory of
plasticity is at best an approximate mathematical mode! of behavior, and its usefulness
would be impaired by complications.
The consistency condition
flo = ¢,

where { = ¢F/Ca. combined with eqns (5), (6). (9). and (24), yields

(Cé = (H+1'Cg)4,

H = kh'g (25)
is the plastic modulus, whenever £ > 0. Stability under strain control implies that
H+§Cg >0,

and this condition will be assumed to be met. Consequently
p=SEEE (26)
P

and therefore the elastic-plastic tangent stiffness operator is defined by

. : (I'C.e)
o= Cca - Cpg ﬁ:fra (27)
[

in place of eqn (18). The tangent stiffness, as a piecewise linear operator, is symmetric if C,
is symmetric and if C,g is proportional to CIf. The symmetry of C, will be examined in the
next section, while in the following onc it will be shown that the aforementioned pro-
portionality is an appropriate form of the associated flow rule in the presence of stiffness
degradation.

3.2, Elastic degradation

The simplest hypothesis of elastic degradation is based on a single variable & (Kach-
anov, 1958), such that

D = (1 -d)D,, (28)
where D, is the initial stiffness. For an isotropic solid, this hypothesis implies a constant
Poisson’s ratio, which several investigators, e.g. Kupfer ez al. (1969), have reported for

concrete up to a stress level that approximately coincides with the onset of major cracking

SAS 33:3-G
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(typically some 75-80% of the ultimate stress) and that therefore may be reasonably taken
as representing the yield stress. Equation (28) leads to the operator C, given by

Ci=Dsi— 3%}6&’@, (29)

Thus C, is symmetric if and only if k is proportional (or equal, with no loss of generality,
since any proportionality factor can be absorbed in ¢) to a. In other words, elastic stiffness
degradation is associated with an increase in the total deformation work. Note that, in the
elastic range, 6'é = (1 —d) W, where 21, = ¢'De, is the square of the undamaged energy
norm of the strain (Simo and Ju, 1987).

However, the majority of investigators of the multiaxial behavior of concrete (see
Cedolin er «l.. 1977 for a survey: also Andanaes et al., 1977) have found degradation
behavior that is not described by eqn (28). Instead, they have found that the bulk modulus
depends primarily on the volume strain, and the shear modulus on the octahedral shear
strain, In the elastic range. this dependence is equivalent to one in which the bulk and shear
moduli are determined respectively by the volume work and distortional work, and can be
described by assuming, in place of eqn (28) that

K={1-d)K, G ={1-d)G,. (30)
where K (G) and Ky (Gy) denote respectively the current and initial values of the secant
bulk (shear) modulus.

The 6 x 6 stiffness matrix of an isotropic solid can be written in the form
D = K11"+ GUdey,
where 1= (1,1, 1,0,0,0), dev = I - 11" (1 being the 6 x 6 identity matrix), and

20 0 0 0 07
0.2 0 0 0 0
0 0 2 0 0 0
U=10 o 1 0 0
0O 0 0 0 1 0
0 0 0 0 0 1]
Thus
1 l 1Y j U 'dev
Tk TG '
where
L0 0 0 0 07
0 1 0000
0o 0 L 0 0 0
U o} -
0 0 0 1 0 0
0 0 0 0 1 0
L0 6 0 0 0 ]

and therefore, since U dev U “‘dev = dev,
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¢

T,
1 —d: s<k23>u

Cii = Di— 2o, 1¢KTe) —
l —d‘

where o, = 1170 is the mean normal stress, and s = deve is the stress deviator. Consequently
C. is symmetric in all processes if and only if k, = g,1 and k; = s—that is, if the bulk and
shear stiffnesses are associated, respectively, with an increase in the volume and distortional
deformation work.

Let us consider, for example, an exponential dependence of the moduli on the cor-
responding strain, i.e. a dependence given by

K= Kﬂe_atzv‘ G = Goe-alyoct‘

where a, and a, are constants, and &, = 17g and y, = 2,/£"Ug/6 are the volume strain and
the octahedral shear strain, respectively. It can be shown that these functions can be
obtained, in monotonic radial loading, from the following forms of ¢, and ¢,:

_a(l-d) ‘\/gaz(l‘“d:)
¢|"' '0_0' . ¢2— 3 \/'—,'2 N

3.3, The associated flow rule

It is well known in classical plasticity theory that what is generally known as the
associated flow rule—that is, the normality of the plastic strain-rate tensor to the yicld
surface in stress space—is cquivalent to the axiom of maximum plastic dissipation (MPD)
when the clastic stiffness is constant, or, more generally, when the free energy (at a given
temperature) may be decomposed as

‘1’ = '1&:(8—8“) +¢p{c{!-a2s . -)9

where the o, are the plasric internal variables i.c. variables whose rates vanish whenever
£ = (). Such consequences of the associated flow rule as uniqueness of solutions to boun-
dary-value problems and the theorems of limit analysis flow largely from the MPD axiom,
which has also been helpful in clarifying the form taken by the associated flow rule in large-
deformation plasticity (Lubliner, 1984, 1986).

In its most general form, the MPD axiom may be expressed as follows. Let the free
energy be written as (&5, a, . . ., By, .. .), where & = g—¢” is the elastic strain, the a, are
the plastic internal variables as above and the f§; are any other internal variables. The total
dissipation is

D=a"—y.

Since ¢ = JY/0¢", the dissipation may be decomposed as

D = D¢+Dp‘
where
o
Dy= =Y —f
j a6; !

and
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, oy
D, = O’rép'—“ ';—1',.
P Zcz,
The latter is the plastic dissipation. a function of e—¢%, x,. .. .. Bio...:€&. 4,.....The
MPD axiom assumes that
Dp(z-*sp,:!l ..... ﬁh..‘:ép.'il....)ZDP(G*““E".’Zh....ﬂh..';ép\dl,...) (3[)

if £* is a state of strain that can be attained from & by means of an elastic process, i.c. one
with no change in ¢, the z, or the §,. In simple cases inequality (31) reduces to the well-
known form

6l = o* ek,

With D, a differentiable function of e — €7, inequality (31) may also be expressed in the local
form

§'0D,/Ce 2 0. (32)

For an clastic -plastic solid exhtbiting hinear elasticity with degradation as described in
Section 3.1, the free energy may be written as

= Ye—) D~ + (a,.. )

where D depends on the ¢, and §,, as before. Note that the §; are included among the «.,.
The plastic dissipation is, accordingly,

. 1 . . .
D, = (z-&) [l) -5 Y OD/d (8 — )] :lé" o
=
and the local form of the MPD axiom, incquality (32), becomes
e‘"’[n—z(7[)/0(5,(s-gv)lf]év >0,
1

or, in view of eqn (23).

§'C,& > 0.
The flow rule (4) implics that

£Cg=0 (EL))
whenever 4 > 0, that is, whenever

i'Clf =0, (34)

in view of eqn (26). The simultancous satisfaction of inequalities '(33} and (34) requires that
C,g be proportional to or, with no loss of generality, equal to CJf:

C,g=Cdf (35)

In a solid with clastic and plastic stiffness degradation as defined here, then, the flow rule
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(4) may be regarded as associated if g obeys eqn (35). In the absence of degradation,
C. = C, = D and therefore the classical form g = f is recovered.
If eqn (35) holds, the tangent elastic—plastic stiffness is defined by

(FC.&)

H+{'CIf (36)

¢ =Ci=Ci-CIf
It thus differs from the classical form only in that the constant elastic stiffness D is replaced
by C..
3.4. Plastic degradation—an example
A simple model of plastic degradation that may be appropriate for concrete is based
on the assumption that plastic degradation occurs only in the softening range, and that the

stiffness is then proportional to the cohesion—that is, there is only one plastic degradation
variable d = 9, with the current stiffness given by

D = (1-8)D(d,,...).

and with 0 governed by the rate equation
1-¢
= —(—¢),
(-6
the initial value § being zero, so that, in the softening range (¢ < 0),

§=1--5m,

"‘I’"ﬂl
The vector | = 1, appearing in eqn (21) is accordingly given by

1-0 .
L= = (—koh',

the quantitics h and & being those of eqns (5) and (6). Thus

C,=D+ =k ah’.

¢

Equation (35) may now be solved for g:

s (=kX'D'CIt
— 1 Te_ 3
g=D [C,f c+(—k>hTD"¢d . 37
The plastic modulus # as defined by eqn (25) is given by
ckh™D - 'C]f
(38)

T e+{=k>nD g’

4. NUMERICAL EXPERIMENTATION

The constitutive model presented has been implemented in a standard finite element
program for non-linear analysis of structures and applied to evaluate the numerical response
of several specimens for which experimental results are known. Before entering in the
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yA x

Fig. 4. Direction of cracking.

discussion of the examples analyzed, some general considerations on the definition and
representation of cracking have to be mentioned.

Cracking is the most important external manifestation of damage in a concrete struc-
ture. In order to obtain a graphic representation of this kind of damage. some parameters
are evaluated at cach integration point a posteriori, once convergence of the non-linear
solution has been reached. This can be interpreted as a postprocessing of the results in
which conditions for onsct of cracking, crack directions, plustic strains {as a measure at the
opening of the cracks). energy dissipation and shear-retention factor are computed by means
of the following procedure :

(i) Cracking imtiates at a point when the plastic-damage variable « is greater than
zero, und the maximum principal plastic strain s positive. The direction of crucking is
assumed to be orthogonal o that of the maximum principal plastic strain at the damaged
point. Other criteria for defining onset and directions of cracking as the focalization condition
bused on the acoustic tensor (Willam and Sobh, 1987), or maximum encrgy release (BaZant,
1986), are also possible,

(b} The vector of plastic strains along the directions of the crack, ¢, can be obtained
in terms of the plastic strains & expressed in global Cartesian axes as:

W
v

o cos’20 sin®0 kin207)
e’ = ‘ E }'ﬁ' B (39)

s —sin20 sin20 cos20 || .

£y

where # is the angle which the direction of the maximum principal strain forms with the
global x-axis (sce Fig. 4). The vector e is used as a measure of the opening and sliding of
the crack.

{c) The energy dissipated in the structure due to cracking in a load increment is
obtained as

AW® = f A dY, (40)
.

where ¥ is the volume of the structure.

(d) The shear retention factor (Rots et af., 1985), at a crack is obtained as
B = 1., /1%, where 1., is the shear stress parallel to the direction of the crack and 3. is
the value obtained from a lincar-elastic analysis as 7., = G,y.,, where G, is the elastic
shear modulus.

4.1. Example | : biaxial compression test ]
The first example presented is the application of the model to the well known biaxial
compression test of Kupfer et al. (1969). The example consists of the study of the behavior
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Fig. 5. Biaxial compression test. Relevant material paramcters and finite-clement mesh.

of a concrete specimen of 20x 20 x 5 cm (see Fig. 5) subjected to different loading con-
ditions — pure compression, double symmetric compression and double non-symmetric
compression.

The geometry of the test, material properties data and the finite element mesh of four
stundard 4-noded rectangular clements used for the analysis are shown in Fig. 5. In all cases
an initial stress approach, which circumvents the problem of non-symmetry of the stiffness
matrix due to non-associated plasticity, has been used. Also. displacements have been
controfled using a standard spherical path technique (Crisfield, 1981).

4.1.1. Pure compression: aq.ja, = ~1/0 and &3 = 0. In Fig. 6(a) numerical results
obtained with our model for associated and non-associated plasticity have been plotted,
Excellent agreement of numerical results for the g,:-21, curve with experimental test, also
plotted in the Fig. 6, is obtained for both cases. Good agrecment between experimental and
numerical results is also obtained for the #,,-2,, curve. However, associated plasticity seems
to match experimental results better after the stress peak in this case.

In Fig. 6(b), numerical results obtained by different researchers for the same problem
are shown for comparison. Finally, in Fig. 7, the crack directions obtained at total failure
in the Gauss points are shown,

4.1.2. Double symmetric compression: 63/6,, = —1/~1 and &,; =0. Numerical
results for the o10-€12 {(or 0,—¢,,) curve as shown in Fig. 8(a). Good agreement with
available experimental data (Kupfer ef al., 1969), is obtained for both associated and non-
associated plasticity. However, some perturbations of numerical results towards the end of
the test can be observed. These are due to the well-known locking effect in 4-noded
rectangular clements working under incompressibility conditions, as is the casc in the
example analyzed when plastic strains develop. This spurious effect can be eliminated by
using reduced integration and other numerical techniques (Crook and Hinton, 1987).
Results obtained by different researchers for the same problem have been plotted in Fig.
8(b) for comparison.



kg em?

i
£ :'i]/
00 7] o, /0
o
360 S
i
320 —— Eaperimental test, Kupfer gt gl,i19¢9)
*
x + tog~ ey
noi-asseated How
80 - x4 . EER LI TRANTE
* * o (oypmen)
240 4 associated flow
* ¢ Loy
* *
200 f
x +*
*
160 Proposed modet
= v
120 4 .
+
80 -
+ " 2
. x :
40 - . x .
L x .‘
L3 x *
0 <L a—. A
p—y T L T M| 9 1
~Q 06 -0 02 0 02 o 06 o g

¢xl0"

o ¥g cm?

ek CRRF

Mroz st al,
“00 PR NP
(g2 ~6yq)
Han and Chen
.
e (LTI (1986)
{oases) Buyukozturk and
3% Shareel {1965)
(LTS TR
280 [T } orkm etal”
{22m €32 urmy et at.
240 (0,3 ¢ ) {1979}
200 -4
160
n
120
"
80 ¢
40
e T Y T 1
-0 08 0 08

Fig, 6. Biaxial compression test. Compared stress-strain resulis for pure symmetric compression,

81

P 12 waNiieay f



A plastic-damage mode! for concrete 319

-
ke Qriginal shape

22 ==
& o]

22}

ke~ Datormed shape

o

i

Fig. 7. Biaxial compression test. Distribution of cracking for pure symmetric compression.

4.1.3. Double non-symmetric compression : 60, = — 1/ —0.52 and 53, = 0. Numeri-
cal results obtained for the aa.-6.; and g, curves are shown in Fig. 9(a). Results agree
reasonably well with those reported by Kupfer er af, (1969), with errors of 3% and 15%
in the peak stress and the corresponding strains, respectively, for the a,,-6,; curve for both
associated and non-associated plasticity analysis. The use of non-associated plasticity seems
to be more important to match experimental results for the o.,-6,, curve, although the
peak responsce is not very precisely reproduced in this case. The difficulties of analyzing this
problem are evidenced in the reproduction of the numerical results obtained by various
rescarchers shown in Fig. 9(b).

4.2, Example 2: analysis of « notched beam mixed fracture mode

This example is a reproduction of the experimental test performed by Arrea and
Ingraffea (1981). The geometry of the notched beam, material data and loading conditions
used to induce a mixed fracture mode (modes | and 1) are shown in Fig. 10. As it can be
seen in the figure, the steel beam, used to transmit the loads to the concrete beam, has also
been considered in the analysis (assuming lincar behavior) in order to take its rigidity into
account. The numerical analysis was performed using cight-noded two dimensional finite
clements, and the mesh used is shown in Fig. 10(a). The crack mouth sliding displucement
(CMSD) at the noteh tip (see Fig. 10(b)) was controlled using a spherical path technique
(Crisfield, 1981).

Numerical results for the load -CMSD relation, showing the points of onset of cracking
(point A), instability (point B) and ultimate state analyzed (point C) have been plotted in
Fig. 1'1. Good agreement with the experimental results of Arrea and Ingraffea (1981), also-
plotted tn Fig. 11, is obtained.

In Fig. 12 the cracking pattern at the peak (point B of Fig. 11) and ultimate load (point
C of Fig. 11) arc shown. It is interesting to note that cracking localizes in a narrow curved
band only after the peak load, for which all cracks are distributed almost vertically and
form an angle of approximately 60" to the horizontal axis (see Fig. 12(a)). Excellent
agreement between the localized cracking band obtained numerically and experimentally is
achieved, as can be scen in Fig. 12(c).

The principal stress distributions at the onset of cracking (point A of Fig. 11) and the
ultimate state (point C of Fig. 11) are shown in Fig. 13. It is worth noting the stress
relaxation in the zonc where cracking localizes (see Fig. 13(b)). This localization can also
be clearly seen in Fig. 14, where the deformed shape of the beam (magnified 300 times) at
the end of the test is shown.
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Fig. 12. Notched beam. Distribution and localization of cracking: (1) at the peak stress (B)—all

cracks; (b) at the ultimate state (C)—cracks greater than 3% of the maximum crack ; (c) at the

ultimate state (C)—comparison with experimental results of Arrea and Ingraffea (1981)—cracks
greater than 5% of the maximum crack.

5. CONCLUSIONS

The authors believe that they have demonstrated that, when appropriately applied, the
classical theory of plasticity is a useful tool in the rate-independent inclastic analysis of a
material, such as concrete, which by no means can be regarded as clastic-plastic in the
usual sense. The significance of the result is both theoretical and practical.

On the theoretical plane, we hope to have helped to show that plasticity theory, when
not interpreted too narrowly, is a very flexible model—one that can be used to describe a
wide variety of behavior, including dilatancy and other non-associative phenomena, stiffness
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(a)

(b}

[ig. 13. Notched beam. Stress ficld @ (i) at the elastic state (A); (b) at the ultimate state (C).

|

Locotization of domoqe—/

Fig. 14. Notched beam. Deformed shape at ultimate state (displacement magnified 300 times), and
localization of the damage.
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degradation. and others. Furthermore. it can be used to gain information about one
phenomenon—cracking—which is decidedly not one that is usually associated with
plasticity. In other words, plastic strain may be identified with any and all inelastic strain.
including cracking strain,

The practical significance of our results is that plasticity theory is a rather simple model
in comparison with models based on fracture mechanics or the more sophisticated versions
of continuum damage mechanics. [n particular, a large volume of numerical codes for the
solution of problems in plasticity theory already exists, and is continually being enriched.
The excellent agreement with experiment obtained in the solution of a difficult problem
such as that of the notched beam shows that the potential of the present approach is great.

In future work, the authors hope to attack problems that include regions of triaxial
compression through the incorporation of a cap in the yield surface.
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